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Darboux Transformations and 
Supersymmetrization Procedures 
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We discuss the Darboux transformations--or, in an equivalent way, the 
factorization method--in connection with two procedures of supersymmetrization 
available in two- and three-dimensional spaces, namely the standard and the 
spin-orbit coupling procedures. 

1. I N T R O D U C T I O N  

Since Darboux's contribution (Darboux, 1882), the construction of  solu- 
tions of  the Sturm-Liouvil le  equation 

-~,xx + u(x)~, = x~, (1.1)  

where Ox stands for the derivative of  ~ with respect to x, has been well 
known. Indeed, if ~1 is a particular solution of (1.1) (corresponding to the 
eigenvalue h0,  it is easy to convince oneself that the function 

$[11 - d:l ' W ( ~ l ,  ~ )  - -  ~bl~x - ~ lAb (1 .2 )  

given in terms of  the usual Wronskian determinant, is a solution of  (1.1), 
where the function u(x)  has been replaced by 

Utll(X) = u(x)  - 2(ln ~bl)~x (1.3) 

In other words, Darboux's theorem declares that the Sturm-Liouvil le  equation 
is invariant under the transformations ~ ---> t~ll I and u ---> Ull I. 
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Equation (1.1) plays a prominent role in quantum mechanics: it is nothing 
else but the time-independent Schr6dinger equation, while 4, ~u, and �89 are 
the wavefunction, the potential, and the energy, respectively. In that context, 
the Darboux transformations (1.2) and (1.3) have been exploited in the equiva- 
lent form 

B - H  = Ht,IB- (1.4) 

called the factorization method (Schr0dinger, 1940). In (1.4) we have intro- 
duced the operators 

1 d 2 1 
H -  2 dx a + 2 u (1.5a) 

and 

1 d 2 1 
H|ll - 2 dx 2 + 2 uilj (1.5b) 

) 1 
B -  = - ~  - (In 0t)~ = ~ ( i p  - (In ~,)x) (1 .5c)  

Such developments have been reconsidered in the recent literature (Mat- 
veev and Salle, 1991) because of their connection with supersymmetric quan- 
tum mechanics (Witten, 1981). In fact, one can see that the Witten superalgebra 
characterized by the anticommutation relations 

{a, Q} = 0, {Q, Qt} = nss (1.6a) 

and the commutation relation [equivalent to (1.4)] 

[nss, Q] = 0 (1.6b) 

where Hss is the (self-adjoint) supersymmetric Hamiltonian, can be real- 
ized with 

(o 0) 
if 

u = [(In ~l)x] 2 + (In t~l)x~ (1.8a) 

uol = [(In t~l)~] 2 - (In ~l)= (1.8b) 

In these supersymmetric developments, the function (In 4 0  is usually referred 
to as the superpotential (Witten, 1981). 
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Let us finally mention that the generalization of (1.4) to the (physically 
interesting) contexts of two and three space dimensions has already been 
achieved (Andrianov et  al., 1984, 1985), but without any connection to a 
specific procedure of supersymmetrization. The purpose of this paper is thus 
to relate the results of Andrianov et  al. (1984, 1985) to such a procedure, 
i.e., the standard procedure (Witten, 1981), and to extend these results to 
another possible procedure, i.e., the spin-orbit coupling procedure (Balan- 
tekin, 1985; Beckers et  aL, 1987). As we will show, in the three-dimensional 
case, the latter is much more interesting, physically speaking, because it 
includes (in contrast to the standard one) the concept of "ant ipar t ic les"  
(Moshinsky et  al., 1990). 

In Section 2 we discuss the Andrianov et  al. results in the context of 
two space dimensions, relate them to the standard procedure, and extend 
them to the case of the spin-orbit coupling procedure. A similar analysis is 
introduced in Section 3 for the context of three space dimensions and the 
differences between the two procedures are discussed. 

2. THE CONTEXT OF TWO SPACE DIMENSIONS 

If, by analogy with (1.5c), we introduce the operators 

1 
Bi- = - - ~  [ipt - (In t~l)xt], 1 = 1, 2 (2.1) 

we can, after Andrianov et  al. (1984, 1985), generalize the condition (1.4) as 

B [  H = Htt]l,,BT, (2.2a) 

and 

if 

H[2]C ~- = CmH[l]ml, 1, m = 1, 2 (2.2b) 

C i  = el,,BT, (2.3) 

where e stands for the (antisymmetric) Levi-Cevita pseudotensor and the 
sum on repeated indices is understood. 

In a parallel way to the one-dimensional case, we can rewrite the relations 
(2.2) in a matricial form (l.6b) with the identifications 

Hss = He~,l + Htql,nel+l,m+l + H[2]e4,4 (2.4) 

Q = B[-el+l, l + Cl-e4,l+ 1 (2.5) 

The notation ek,l refers to (4 by 4 in this case) matrices containing zeros 
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everywhere except unity at the intersection of  the kth row and the/th column. 
In order to satisfy all the Witten requirements, we also have to require the 
anticommutators (1.6a), i.e., 

and 

[Bi-, B~] = 0 (2.6) 

H = B I B [  (2.7a) 

Hllllm = H~tm + [B[, B+~] (2.7b) 

Hi2 ] --- B I B [  (2.7c) 

The condition (2.6), which in terms of the superpotential is 

(In ~l)xtx2 = 0 (2.8) 

is automatically obeyed for central problems including the harmonic oscillator 
interaction, which corresponds to 

1 t o ~  (2 .9)  In t~l = 

where to is the angular frequency of that oscillator. In this case, the supersym- 
metric Hamiltonian (2.4) is simply 

1 1 1 z 
H s s  -~ ~ Pl q- ~ to X~l d- to(el,  1 - e4,4) (2.10) 

and we can thus conclude that the Andrianov et al. constraints (2.2) are 
typical of the standard (Witten, 1981) supersymmetrization procedure. 

As is well known (Balantekin, 1985; Beckers et al., 1987), there exists 
another procedure leading to another possible supersymmetric oscillator asso- 
ciated with the 2 by 2 matrix 

1 2 /~s o = ~p2 + 2 to ~ + to(el,l - e2,2) + toL3 (2.11) 

The introduction of the third component of the angular momentum is a 
specific feature of this procedure, which is called the spin-orbit coupling 
procedure. The corresponding Q is given by 

Q = (B~ + iBm)e2,1 (2.12) 

and it is straightforward to rewrite the commutator (1.6b)in the form 

(B-( + iB~)H s~ so - = HtlI(B ~ + iBm) (2.13) 
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analogous to (1.4) if 

HSO = HSOel,l + so H t H e 2 , 2  

= (B~ - iB~)(B? + iB~)ela + (B? + iB~)(B~ - iBm)e2,2 (2.14) 

We can thus conclude that the Darboux transformations also hold for this 
spin-orbit coupling procedure. 

Another way to confirm this conclusion is to try to insert the spin-orbit 
coupling features inside the standard ones. For this aim, we propose the 
following identifications: 

H = H s~ H[2] = HtS~ (2.15) 

1 
D-{ = D~ = --~ (B? + iBm) (2.16) 

Then, if we consider the operators (2.5) where we have replaced [also in 
(2.2) and (2.3)] the B/- by the D/- defined in (2.16), we satisfy the conditions 
(2.2) with 

H [ l l l l  = /"/[1122 = {Di-, D~-} (2.17a) 

and 

/'/[1112 = /-/[1121 = [DI, D{] (2.17b) 

Consequently, we confirm the previous conclusion. Moreover, when the oscil- 
lator interaction (2.9) is under study, the operators (2.17) lead to [see (2.4)] 

1 2 1 
nss = ~Pl + "~ t~ + ~ ( e l , l  - e2,3 - e3,2 - e4,4) + toL3 ( 2 . 1 8 )  

When the unitary transformation 

1 
U = e lA  + e4,4 + ~ (e2,2 - -  e2,3 - -  e3,2 - -  e3,3) (2.19) 

is applied to this Hamiltonian (2.18), it becomes 

Hss = Hs s~ | I2 (2.20) 

where 12 is the identity operator in the two-dimensional space, and the inclu- 
sion of the spin-orbit coupling case in the standard one is particularly clear. 
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3. THE CONTEXT OF THREE SPACE DIMENSIONS 

The operators B/- we consider now are still defined by (2.1) up to the 
fact that the index l runs from 1 to 3. The relations (2.2) when extended to 
a three-dimensional space are 

B f  H = HttltmBm (3.1a) 

Ht2]lkC~m = C~ H[l]km (3. lb) 

/-/[3 ] B[- = BTn n[2lmt (3.1C) 

C ~  = r k, l, m = 1, 2, 3 (3.2) 

If we put the conditions (3.1) in a matricial form (l.6b), we are led to 

Hss = Hel,1 + Htljlmet+l~+l + Ht2llmet+4,m+4 + H[31es,8 (3.3) 

Q = Bl(et+tA - e8,1+4) + C~mern+4,1+l (3.4) 

Once again, in order to complete the supersymmetric requirements, we have 
to add 

[Bj-, Bi-] = 0 (3.5) 

and 

H = B~B~- (3.6a) 
- -  + 

Htlltm = Bt B m +  C ~ C ~  (3.6b) 

= ClkC,7,k (3.6C) H[2llm B [  Bm + - + 

HI3] ~- Bi-B]- (3.6d) 

The dimension of the (8 by 8) matrices and the particular context of the 
oscillator interaction (2.9) imply that 

1 1 to2X2 + to Hss = ~ pt 2 + ~ -~ (3el.l + e2,2 + e3,3 + e4,4 - e5.5 (3.7) 

-- e6,6 -- e7,7 -- 3e8,8) 

and this leads us to the conclusion that these conditions (3.1) are actually 
relevant to the standard procedure (Witten, 1981). 

The spin-orbit coupling version of (3.7) is (Balantekin, 1985; Beckers 
et al., 1987) 

1 1 (D2~ll + 3to HSO = 2 p2 + ~ ~ (el,1 + e2,2 - -  e 3 , 3  - -  e4,4) (3.8) 

+ to(L" 0") | (em - e2,2) 
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and we deal with 4 by 4 matrices only (the o"s are the usual Pauli matrices). 
The associated generator Q is 

Q = BTo'l | e2,1 (3.9) 

and implies the relations 

B~ H s~  + (B~ - i B ~ ) H  s~  = so - so - H t l l l l B  3 + Htql2(Bl + iBm) (3.10a) 

B ;  H s~  + (B~ - i B ~ ) H  s ~  so - = HII I I I (B  1 -- iBm) so - - HU]12B 3 (3.10b) 

(B1 + i B ~ ) H  s~  - so so - so - - = H[q22(B1 + iB2)  (3.10c) B3 H21  H [ q 2 1 B 3  + 

(Bi- + i B ~ ) H  s~  - - so so - = - -  - -  H t l ] 2 2 B 3  (3.10d) B3 H22 Htll21(Bl iBm) so - 

as generalizations of  (1.4) in the spin-orbit  coupling context if 

H s~  = H~e~,~s~ • el,l + Htll~f~e~,~s~ @ e2,2, ct, [3 = 1, 2 (3.11) 

However, despite of  the fact that the spin-orbit  coupling procedure can 
be associated with extended Darboux transformations [see equation (3.10)] 
in this three-dimensional context, it is not possible here to insert this spin-orbit  
coupling procedure inside the standard one, in contrast to the two-dimensional 
results (2.15) and (2.20). Indeed, let us suppose that B~- vanishes. From (3.8) 
and (2.14), it is clear that this Hamiltonian (3.8) is in fact the direct sum of 
(2.14): (H s~ -- so so so H l l ,  HIll ~ H[1122) and a similar operator to (2.14), but 
where to has been replaced by - t o  (H s ~  -- so so so . H 2 2 ,  Htq- ,o  - -  H [ 1 ] l l ) .  this is 
the impact (Moshinsky et  al.,  1990) of  the " 'ant ipart icle"  and it is in complete 
agreement with the fact that the spin-orbit  coupling procedure is related to 
(relativistic) Dirac Hamiltonians (Beckers and Debergh, 1990) [the operator 
(3.9) coincides with the Dirac Hamiltonian if the mass term is omitted]. So, 
by exploiting the connection (2.15), we can try to insert the Hamiltonian 
(3.8) in the Hamiltonian (3.3), where the operators B/- will be replaced by 
D [  = (2.16) or whatever. Thus, we propose the identification [analogous 
to (2.15)] 

H s o  s o  s o  = H 2 2 ,  :-- H[1122, = H l l  , H[1133 H[2133 /_/[31 SO = H i l ] l t  
(3.12) 

Moreover, the corresponding Q is now 

Q = Df(e2,1 + e3,1 - -  e7,2 + e7,3) + D [ " ( e s , 4  - e6,4 - e8,5 - e8,6) 

(3.13) 

where [compare with (2.16)] 

I 
Di- '  = - - ~  (B-[ - iBm) (3.14) 
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The operator (3.13) cannot be identified with (3.4) (D/-' evidently being 
different from D7 when an interaction is introduced) and consequently we 
cannot insert the spin-orbit coupling procedure inside the standard one due 
to the presence of the operators (3.14) (it is afortiori true when B~- is not 
vanishing). In other words, the concept of "antiparticles" is present in the 
spin-orbit coupling procedure, but cannot be recovered in the standard 
procedure. 
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